GSL¶
The GNU Scientific Library. Provides a wide range of mathematical routines.
Introduction¶
The GNU Scientific Library (GSL) provides a wide range of mathematical routines such as random number generators, special functions and least-squares fitting. There are over 1000 functions in total. The routines have been written from scratch in C, and present a modern API for C programmers, allowing wrappers to be written for very high level languages.
The library covers a wide range of topics in numerical computing. Routines are available for the following areas:
Complex Numbers Roots of Polynomials
Special Functions Vectors and Matrices
Permutations Combinations
Sorting BLAS Support
Linear Algebra CBLAS Library
Fast Fourier Transforms Eigensystems
Random Numbers Quadrature
Random Distributions Quasi-Random Sequences
Histograms Statistics
Monte Carlo Integration N-Tuples
Differential Equations Simulated Annealing
Numerical Differentiation Interpolation
Series Acceleration Chebyshev Approximations
Root-Finding Discrete Hankel Transforms
Least-Squares Fitting Minimization
IEEE Floating-Point Physical Constants
Basis Splines Wavelets
Modules¶
For the list of available gsl modules, use the command:
$ ml av gsl
---------------- /apps/modules/numlib -------------------
GSL/2.5-intel-2017c GSL/2.6-iccifort-2020.1.217 GSL/2.7-GCC-10.3.0 (D)
GSL/2.6-GCC-10.2.0 GSL/2.6-iccifort-2020.4.304
Linking¶
Load an appropriate gsl
module. Use the -lgsl
switch to link your code against GSL. The GSL depends on cblas API to BLAS library, which must be supplied for linking. The BLAS may be provided, for example from the MKL library, as well as from the BLAS GSL library (-lgslcblas
). Using the MKL is recommended.
Compiling and Linking With Intel Compilers¶
$ ml intel/2020b gsl/2.6-iccifort-2020.4.304
$ icc myprog.c -o myprog.x -Wl,-rpath=$LIBRARY_PATH -mkl -lgsl
Compiling and Linking With GNU Compilers¶
$ ml ml GCC/10.2.0 imkl/2020.4.304-iimpi-2020b GSL/2.6-iccifort-2020.4.304
$ gcc myprog.c -o myprog.x -Wl,-rpath=$LIBRARY_PATH -lmkl_intel_lp64 -lmkl_gnu_thread -lmkl_core -lgomp -lgsl
Example¶
Following is an example of a discrete wavelet transform implemented by GSL:
#include <stdio.h>
#include <math.h>
#include <gsl/gsl_sort.h>
#include <gsl/gsl_wavelet.h>
int
main (int argc, char **argv)
{
int i, n = 256, nc = 20;
double *data = malloc (n * sizeof (double));
double *abscoeff = malloc (n * sizeof (double));
size_t *p = malloc (n * sizeof (size_t));
gsl_wavelet *w;
gsl_wavelet_workspace *work;
w = gsl_wavelet_alloc (gsl_wavelet_daubechies, 4);
work = gsl_wavelet_workspace_alloc (n);
for (i=0; i<n; i++)
data[i] = sin (3.141592654*(double)i/256.0);
gsl_wavelet_transform_forward (w, data, 1, n, work);
for (i = 0; i < n; i++)
{
abscoeff[i] = fabs (data[i]);
}
gsl_sort_index (p, abscoeff, 1, n);
for (i = 0; (i + nc) < n; i++)
data[p[i]] = 0;
gsl_wavelet_transform_inverse (w, data, 1, n, work);
for (i = 0; i < n; i++)
{
printf ("%gn", data[i]);
}
gsl_wavelet_free (w);
gsl_wavelet_workspace_free (work);
free (data);
free (abscoeff);
free (p);
return 0;
}
Load modules and compile:
$ ml intel/2020b gsl/GSL/2.6-iccifort-2020.4.304
$ icc dwt.c -o dwt.x -Wl,-rpath=$LIBRARY_PATH -mkl -lgsl
In this example, we compile the dwt.c code using the Intel compiler and link it to the MKL and GSL library, note the -mkl
and -lgsl
options. The library search path is compiled in, so that no modules are necessary to run the code.